Reg No.:	Name:
	- ''''

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

Course Code: EC301

Course Name: DIGITAL SIGNAL PROCESSING

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

Marks

- 1 a) StateParseval's theorem of DFT?Using DFT find the energy of the (7) sequencex $(n) = 0.2^n \ u(n)$, n < 4.
 - b) Compute 8-point DFT of the sequence $x(n) = \{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0, 0\}$ using DITFFT (8) algorithm. Follow exactly the corresponding flow graphs and keep track of all the intermediate quantities by putting them on diagram.
- 2 a) Find linear convolution of the sequences x(n) and z(n) using circular (7) convolution. Given $x(n) = \{1,2,3,1\}$ and $z(n) = \{4,3,2\}$.
 - b) Explain how N point DFTs of two real sequences can be found using by computing a single DFT. Illustrate with the sequences $x_1(n)=\{4,3,-1,5\}$ and $x_2(n)=\{6,-4,2,5\}$.
- a) Find the number of real multiplications and additions involved in the computation of 64-point DFT using i) direct computation ii) FFT algorithm. Also comment on the computational advantage of FFT algorithm over the direct method.
 - b) Using Overlap Add method, find the output of the filter with filter response h(n) (8) when an input x(n)={1,2,2,3,4,2,2,1,1} is given. Take data block size of length L= 3 and h(n)= {2,3,4}.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Design a linear phase FIR low pass filter with cut off frequency of 2 kHz and (10) sampling rate of 8 kHz with a filter length 11 using Hanning window.
 - b) Find the filter transfer function H(z) from the analog filter with system function (5) H(s) using Impulse Invariance method.

$$H(s) = \frac{s+1}{s^2 + 0.2s + 16.01}$$

5 a) Apply frequency sampling technique to design a linear phase FIR filter of (10) length N=7 with following specification.

$$H_d(e^{j\omega}) = e^{-j\alpha\omega}; \quad 0 \le |\omega| \le 0.55\pi$$

= 0 otherwise

- b) Transform the prototype low pass filter with system function $H(s) = \frac{\Omega c}{s + \Omega c}$ (5) into high pass and band pass filters.
- a) Design a Butterworth low pass digital IIR filter with a pass band edge (10) frequency of 0.25π with a ripple not exceeding 0.5 dB and a minimum stop band attenuation 15dB with a stop band edge frequency of 0.55π . Use bilinear transformation.
 - b) Compare the performance of FIR filter design using rectangular window and (5) Hamming window.

PART C

Answer any two full questions, each carries 20 marks.

7 a) Determine a direct form realization of the FIR filter with the following filter (4) function using minimum number of multipliers.

 $h(n) = \{1,2,3,4,3,2,1\}$

b) Draw the cascade and parallel form realisation of the filter with following (8) transfer function

$$H(z) = \frac{3(5 - 2z^{-1})}{\left(1 + \frac{1}{2}z^{-1}\right)(3 - z^{-1})}$$

- c) How upsampling and downsampling by a factor of 3 affect the frequency spectrum of a signal x(n) with frequency spectrum $X(e^{j\omega})$? What is the need of low pass filter prior to downsampling?
- 8 a) For the signal $x(n) = 0.2^n \ u(n), n \le 8$, plot the following signals

 (i) x(n) downsampled by 3 (ii) x(n) upsampled by 3
 - b) With an example illustrate the error introduced by truncation and rounding in (8) fixed point representation of numbers.
 - c) What is the effect of coefficient quantization in IIR filter structures? (8)
- 9 a) Obtain the direct form II, cascade and transposed direct form II structures for the (10)

system.

$$y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)$$

b) Explain the architecture of TMS320C67xx DSP with block diagram. (10)
